Hydrothermal Synthesis of Complex Fluorides NaHoF₄ and NaEuF₄ with Fluorite Structures under Mild **Conditions**

Xiumei Xun,* Shouhua Feng, Junzuo Wang, and Ruren Xu

Department of Chemistry, Jilin University, Changchun 130023, P.R. China

Received May 8, 1997. Revised Manuscript Received August 8, 1997[®]

The complex fluorides NaHoF₄ and NaEuF₄ with fluorite structures were hydrothermally synthesized and characterized by means of X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis, and infrared spectroscopy.

Introduction

Since the 1960s, a number of papers^{1–3} have reported the solid-state syntheses of complex fluorides in sodium fluoride-rare-earth trifluoride systems. Some complex fluorides with general formula ABF_4 (A = Li, Na; B = trivalent transition metals and rare-earth elements) possess scheelite and fluorite structures, which are important host crystals for solid-state lasers.² Various isomorphous replacements in the framework of complex fluorides lead to many controllable properties.³ However, most complex fluorides⁴ were prepared from the melt under an atmosphere of HF mixed with an inert carrier gas. For instance, Shaimuradov's group⁵ made some fluorides by heating a mixture of KF and HoF₃ in quartz vessel up to 1000 °C. A flux growth method⁶ and high-temperature (>400 °C), high-pressure (>100 MPa) hydrothemal technique⁷ were also reported. Taking into account some of the interesting properties of the complex fluorides, such as photoluminescence behavior,8 ferromagnetic,⁹ paramagnetic,¹⁰ and magnetolastic characteristics,¹¹ and with an aim to develop new routes without complicated syntheses apparatus, we have made a number of complex fluorides (ABF₃) with perovskite structures¹⁵ under mild hydrothermal conditions. In this paper, we report a hydrothermal synthesis

- (2) Insley, H.; Hebert, G. M. Inorg. Chem. 1966, 5, 1222–9.
 (3) Della, M.; Roy, J. Electrochem. Soc. 1964, 111, 421–9.
- (4) Pastor, R. C.; Robinson, M.; Akutagawa, W. M. Mater. Res. Bull. **1975**. 10. 501-9.
- (5) Shaimuradov, I. B.; Reshetnikova, L. P.; Novoselova, A. V. Vestn. Mosk. Univ., Khim. **1973**, *14*, 367–9. (6) Wanklyn, B. M. J. Mater. Sci. **1975**, *10*, 1487–93
- (7) Demianets, L. N. Prog. Cryst. Growth Charact. 1990, 21, 299-355
- (8) Zakaria, D.; Fournier, M. T.; Mahiou, R.; Ccosseins, J. C. J. Alloys Compd. 1992, 188, 250-4.
- (9) Cooke, A. H.; Jones, D. A.; Silva, J. F. A.; Wells, M. R. J. Phys. C 1975, 8, 4083-8.
- (10) Janssen, P.; De groot, P.; De vos, G.; Herlach, F.; Witters, J. High field Magn., Proc. Int. Symp. 1982, 241-3.
 (11) Abdulsabirov, R.Yu.; Kazei, Z. A.; Korablev, S. L.; Terpilovskii, D. N. Fiz. Tverd. Tela (St. Peterburg) 1993, 35, 1876-80.
 (12) Cuth. J. L. Korger, H. Way, P. Prog. 7th Int. Zealite Conf.
- (12) Guth, J. L.; Kessler, H.; Wey, R. Proc. 7th Int. Zeolite Conf., Tokyo 1986, 121.
- (13) Estermann, M.; Mclusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H. *Nature* **1991**, 352.
- (14) Bukovec, P.; Bukuvel, N.; Demsar, A. J. Therm. Anal. 1990, 36. 1751
- (15) Chunyan, Z.; Shouhua, F. J. Chem. Soc., Chem. Commun. **1996**, 1641.

of two complex fluorides, NaHoF₄ and NaEuF₄, both with fluorite structures.

Experiment

Hydrothemal synthesis of NaHoF4 and NaEuF4 was carried out in a Teflon-lined stainless steel autoclave under autogenous pressure. The starting reactants were NaOH (A.R.), NaF (A.R.), Ho₂O₃ (A.R.), Eu₂O₃ (A.R.), NH₄HF₂ (A.R.), NH₄F (A.R.), and HF (A.R.). The mole ratios of initial reaction mixtures for the synthesis of NaHoF₄ and NaEuF₄ were 6.0 NaOH:1.0 Ho₂O₃:6.0 NH₄F:6.0 HF:100 H₂O and 6.0 NaOH: 1.0 Eu₂O₃:6.0 NH₄F:6.0 HF:100 H₂O, respectively, and HF was used as a mineralizer and added with stirring to adjust the pH of the mixture. In the other method of preparing NaHoF₄ and NaEuF₄, NaF and NH₄HF₂ were used as starting materials in place of HF and NH₄F. The mole ratios of mixture were 2.0 NaF:1.0 Ho₂O₃:6.0 NH₄HF₂ and 2.0 NaF:1.0 Eu₂O₃:6.0 NH₄HF₂, respectively. Reaction mixtures were sealed with 80% fill in a Teflon-lined stainless steel autoclave for hydrothermal crystallization at 240 °C. After the autoclave was cooled and depressed, the final powder product was washed with deionized water and dried in air at room temperature.

The crystalline products were identified by X-ray powder diffraction (XRD) on a Rigaku D/Max A diffractometer using Cu K α (λ = 1.5418 Å) radiation. The XRD data for index and cell-parameter calculations were collected by a scanning mode with a step of 0.02° and a scanning rate of 0.2°/min. Silicon (99.99%) was used as an external standard. Scanning electron micrographs (SEM) were performed on a Hitachi X-650B electron microscope equipped with an X-ray energy-dispersive analyzer (EDAX). Thermogravimetric analysis (TGA) was conducted by using a TGS-2 thermogravimetric system. The IR spectra were recorded with a Nicolet 5DX Model FT spectrometer using a KBr pellet technique.

Results and Discussion

Table 1 lists the preparation conditions for NaHoF₄ and NaEuF₄. In the syntheses, the ratio of initial composition and pH of the reaction system were found to be sensitive to the formation, crystallization, and purity of the products.

In the syntheses of NaHoF₄ and NaEuF₄, F⁻ acts both as a reactant and as a mineralizer.^{12–15} From Table 1, when the mole ratios F/Ho of mixture was 7, the pure and well-crystallized product was prepared. However, when the mole ratio F/Ho of mixture was 5, unreacted Ho₂O₃ remained as an impurity. Therefore, excess F⁻ is necessary for obtaining a pure product.

[®] Abstract published in Advance ACS Abstracts, October 1, 1997. (1) Thoma, R. E. Proc. Conf. Rare Earth Res., fourth, Phoenix, 1964, pp 561-70 (published 1956).

Table 1. Hydrothermal Synthesis Conditions for NaHoF4 and NaEuF4

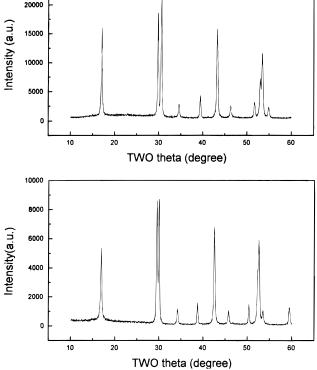
starting materials								
а	b	с	d	a:b:c:d mole ratio	PH value	react temp (°C)	react time (days)	phases in product
NaF	Ho ₂ O ₃	NH ₄ HF ₂		2:1:3	10.0	240	7	NaHoF ₄ + multiphase
NaF	Ho ₂ O ₃	NH_4HF_2		2:1:3.5	8.0	240	7	$NaHoF_4 + multiphase$
NaF	Ho ₂ O ₃	NH ₄ HF ₂		2:1:4	7.0	240	7	NaHoF ₄ + multiphase
NaF	Ho ₂ O ₃	NH ₄ HF ₂		2:1:5	5.0	240	7	NaHoF4
NaF	Ho ₂ O ₃	NH ₄ HF ₂		2:1:6	4.0	240	5	NaHoF4
NaOH	Ho ₂ O ₃	NH ₄ F	HF	6:1:6:6	3.5	240	5	NaHoF ₄
NaF	Ho ₂ O ₃		HF	2:1: :3	2.0	240	7	NaHoF ₄ + multiphase
NaF	Ho ₂ O ₃		HF	2:1: :6	1.5	240	7	$NaHoF_4 + multiphase$
NaF	Eu_2O_3	NH ₄ HF ₂		2:1:4	7.0	240	7	$NaEuF_4 + multiphase$
NaF	Eu_2O_3	NH ₄ HF ₂		2:1:6	4.0	240	7	NaEuF ₄
NaOH	Eu_2O_3	NH ₄ F	HF	6:1:6:6	4.0	240	7	NaEuF ₄
NaF	Eu(NO ₃) ₃	NH_4HF_2		1.1:1:3	4.0	240	7	NaEuF ₄
	Table	2. XRD D	ata foi	NaHoF4		25000		
h	<i>k</i> .	l d _{ot}	s/Å	d _{cal} /Å I	/I0	ŀ		
1	0 () 5.2	066	5.1888	95	20000 -		
1	1 (979					
ī	0 1		253		93	⊒: 15000 -		
2	0 0		950		14			
ĩ	1 1		862		19	15000 (a. (r.) 15000		
2	0 1		917		74			
$\tilde{2}$	1 (604		13	t g		

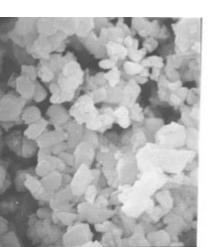
	-	-									
0	0	2	1.7681	1.7686	13						
3	0	0	1.7290	1.7296	38						
2	1	1	1.7145	1.7152	57						
1	0	2	1.6743	1.6740	10						
Table 3. XRD Data for NaEuF ₄											
h	k	1	$d_{ m obs}$ /Å	$d_{ m cal}$ /Å	I/I ₀						
1	0	0	5.2690	5.2477	71						
1	1	0	3.0342	3.0298	92						
1	0	1	2.9865	2.9826	100						
2	0	0	2.6261	2.6239	12						
1	1	1	2.3266	2.3247	17						
2	0	1	2.1267	2.1255	75						
2	1	0	1.9842	1.9835	11						
0	0	2	1.8130	1.8125	15						
3	0	0	1.7497	1.7492	40						
2	1	1	1.7404	1.7400	65						
1	1	2	1.5555	1.5554	14						
2	2	0	1.5149	1.5149	10						

A pH value of 4 was found to favor the formation of NaHoF₄ and NaEuF₄. Therefore, NH₄HF₂ can be used instead of HF to provide a pH value of ca. 4 and eliminate possible air pollution by HF.

Figure 1 shows the XRD of NaHoF₄ and NaEuF₄. respectively. These two compounds crystallize in a hexagonal system with space group P_6 . The unit-cell parameters for NaHoF₄ are a = 5.991 Å, c = 3.537 Å, and for NaEuF₄, a = 6.059 Å, c = 3.625 Å. The values for NaHoF₄ are similar to those for the corresponding NaHoF₄ synthesized by solid-state reaction (a = 5.991Å, c = 3.536 Å) [3, JCPDS Card 18-1253]. The values for NaEuF₄ were slightly bigger than those for the corresponding NaEuF₄ synthesized by solid-state reaction (a = 6.044 Å, c = 3.613 Å) [JCPDS Card 28-1085]. The powder XRD patterns show the product free of impurities.

The SEM observation (Figure 2) of the product shows that the crystallites have regular morphology and this implies that the product is a pure and single phase. The two complex fluorides have different shapes. The morphology of NaHoF₄ is blocklike, and the average grain size is ca. $0.83 \times 1.33 \,\mu\text{m}$, the NaEuF₄ crystallites are needlelike with average grain size of ca. 0.2 imes 1.33




Figure 1. XRD patterns of NaHoF₄ (up) and NaEuF₄ (down).

 μ m. The contents obtained by EDAX for NaHoF₄ and NaEuF₄ are in good agreement with the formulas whose mole ratio of Na:Ho (or Eu) is 1:1.

The thermal stability of the as-prepared NaHoF₄ and NaEuF₄ were studied by TG-DTA analyses in air. No phase transition or mass loss was observed from 25 °C up to 650 °C in either system. These observations indicate that NaHoF4 and NaEuF4 are not hydrated and are stable in dry air, which was confirmed by IR measurement in the temperature range 25-150 °C.

Conclusions

In summary, a new method for the synthesis of NaHoF₄ and NaEuF₄ by mild hydrothermal crystallization at 240 °C is presented. Both NaHoF₄ and NaEuF₄ crystallize in hexagonal systems. All the products have uniform grain sizes. The two compounds are stable in air and free of impurities. The molar ratios and pH values are effective for the syntheses. Excess F⁻ and

961001 25KV X10.0K 3.0um



Figure 2. SEM photographs of NaHoF₄ (left) and NaEuF₄ (right).

soluble sources (NaF, NaOH) dominate the crystallization of the product. Using NH_4HF_2 as a starting material not only provides F^- reactant but also adjusts the mixture to a suitable pH value and avoids air pollution due to HF. Compared with traditional hightemperature solid-state methods, flux methods, and melt methods, the mild hydrothermal synthesis method presents a considerable potential for syntheses of highpurity complex fluoride at low temperatures and low pressures and involved no pollution of the atmosphere.

Acknowledgment. This work was supported by the Chinese NSF through the National Outstanding Youth Science Fund and the State Education Commission through the Excellent Investigator Plan and the Pandeng Plan (S.F.)

CM9703381